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ABSTRACT

The technique described presénts a method to express uncertainty
quantitatively inadvanced system cost estimates. In-particular, the
technique suggests the employment of subjective probability distributions,
which describe the uncertainty in each system élement, to determine an
approximate distribution for total system cost. A 702C program has been

written to pérform the computational opérations.
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GLOSSARY*
Stochastic: An adjective referring to an operation which describes uncer-
tainty statistically.
Random _
Variable:

A quantity whose value is uncertain. To fully describe a
random variable, the probability of every possible value of

the random variable must be given.

Upper (Lower)

Tail: The-value of a random variable such that the probability of
this value or any higher (lower) value equals a stated amount.

Mode: The most probable value of a random variable.

Dependency: I xand y are dependent random variablées, knowledge of
‘the value of either variable will change the analyst's feeling
about the-distribution of the other. Mathematically, if x and
y -are dependent, then p (xk/yj) cannot equal p (x) forall
values of k and j.

Linearly Scaled

Beta Distribu-~

tion;**

A continuous finite unimodal distribution that may be either
skew or symmetrical and has four degrees of freedom. The
rectangular distribution is a special case of the scaled Beta,

and the normal and gamma distributions are limiting forms.

.,*Deﬁnitions correspond to word use in this report.
**Thig distribution is equivalent to Pearson Type L.
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I;th Origin
Moment:

kth Central
Moment;

Mathematical Expression:

(x; o, B8,a,b) ___Lg_i_ﬁj__)_{k-a> (1 -

BET A o+ DT(E+1)

where
a, b, o, and 8 are real numbers;
b, a, and B are non-negative;
T (u) is the gamma function; and

a<x<atkh

The average (or expected value) of a random variable raised

to the kth power, The first origin moment is the mean, .

Mathematical Expressiomn:

(k) Tx p. or S“’ xkp (x) dx

/ iti ]

1 -
dlscrete ¢ontinuous
case e case

The average (or expected value) of a rindom variable dimin-
ished by its mean raised to the kth power. The first central
moment is zero and the second is the variance (the standard

deviation squared).

Mathematical Expression:
k k
u(k) =Z (xi - H) P, or gm (x-1) px)dx .
e -
1

discrete continuous
case case
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Additive
Moments:

Multiplicative
Moments:

‘ System Cost

Input Elements:

Moments (of random vanables) which have the following prop-
erty:* the k “moment for-the-sum - of indepeadent random

variables: equals the sum of the k th momenits of each of the
added -variables,

Mathematical Expression for the First Four Additive

Moments:

Caed LB, B, @
Aj=o ’Az 2)‘"3“ 4 )3[ T

‘Moments (of random variables) which have the following ;frop-

erty:* the&kth ‘moment for the product.of independént random

-variab.‘.es-éqﬁélsztheVprbauct-»of'-kth moments of each of the
multiplicd variables.

Mathematical Expression for Multiplicative Moments:
M, - L

Each variabie tl;e analyst defines in the process of estimating
the syitem total cost. Examples are guantities 6f personnel,
equipment packages, and computer programs, price levels,
and planning factors. As a convenience the abbreviated form,
cost element, is used in the paper.

* §
See Appendix IX for proof.

Ly <

T

e -

AR i . cemease s ameren P ——



‘.,;

Cost
Structure: The manner in which irput cost elements are combined to

determine total system-cost.
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AUTHOR'S PREFACE

Although there is wide agreément concerning the logico-mathematical

rules to which probabilities (whatever they may be) must adhere, there is
‘substantial disagreement among applied: mathematicians, decision theorists,

and:statisticians as to the essential meéaning of probability. Currently, this
controversy séems to be céntered-around:two distinct points of view, One is.
the Yobjectivist" or "relative frequency" point of view, which definés proba-
bility as-the long~run relative frequency limit-of the ratio of the obsérved
nuinber of favorable events to the total number of observed instances associ-
ated-with-the outéomes of a random physical process. Probability, according
to this point of view, isa phenomenologxcal concept--a statistic estimated
from Fepeated observations of some directly observable ptienomenon. On
the other hand, ‘the "subjectivist” or “personalistic™ point of view defines
probability as a numerical coefficient purporting to measure a particular
human being's subjective belief about the outcomes of some physical phenom-
enon. Probability, from the subjectivist standpoint, is not a phenomenologi-
cal concept-at a1l. It .is not'a characteristic of the:physical phenomenon:to
which it purports: 10. refer ‘but, rather, a charactéristic-of human beings--a

'component part of:a particular mdmdual‘s attitude toward a physical phe~

homerion. -As-.such, subjective probability is a fictional-concept, nmuch-like
the concept of "force" in physics, which can only be inferred from observa-
tions of dxsplacement and-motion on the part of physical bodies, and like the
concept of intelligence" in'psychology, which can only be inférred from
ohserved verbal and/or choice behavior 6n the part of human beings.

Viewing probability from the objectivist point of view has proved highly
-successful in many historical applicat’ons, including the management of
gambling houses, industrial quality control, and numerous scientific endeav-
ors, particularly inthe field of genetics. However, the success of these
applications rests upon the existence of a stable, physical process of which
repeated observations can be made. Even more, the whole notion of objec-
tive probebility requires the existence 6f such processes, since the objectiv-
ist definition does not apply to a nonrepetitive phenomenon, Strictly inter-
preted, therefore, the objectivist point of view can be of no assistance in
explaining or predicting the outcome(s) of nonrepetitive phenomena.

However, many real-world decision makers face the necessity of
taking definite actions in the face of substantial uncertainty regarding the

=Xii-




outcomes of nonrepetitive phenomena, Since the objectivist concept of proba-
bility cannot be of service in making such decisions, the subjectivist view
has beén developed to fill the void. The conceptual foundations of subjective
or personalistic probability have been worked out by Leonard J. Savage. {1«
Two pioneers in applying this concept to many real-world decisions problems
have been Robert Schlaiffer(2] and Howard Raiffa. [3] Specific implementa-
tion of this concept in oil well drilling decisions is reported by C. Jackson
Grayson, (4]

The-position taken in-this.report. is. that the process by which military
system costs are generated does not usually constitute a stable, repetitive
phenomenon to which objectivist probability is-an applicable ¢oncept.
Therefore, probability is considéered from the subjéctivist point of view,
and the author presents.a technique by which the necessary implications of
a.decision~maker's or analyst's subjective judgments concerning c¢osts may
be derived and displayed.

J. R. Miller, I

*Numbers in brackets refer to referéences at end of report.
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SECTION I

INTRODUCTION

PURPOSE
The analyst faced with-the task of sstimating the cost of advanced mili-
tary systems is coi\tinualiy ‘beset by thé problem of cbping with a host of

_ attendant unce‘rté,iﬁgies. ‘Single-w‘(alueestimates, although duly qualified, bélie

the. full range-of possible: eoést conséquénces that may ensue oncé the decision

i to acquire a given system has been made, and in a-great many instances such
-estimates gravély misstate the ultimate systeim ¢ost. Therefore, edrly in

¥° - the system lifecycle, defense planners have béen promulgating their need for

-ii‘riplfoved information.about a proposed system's possible economic: implica-
tiohs, déspite manifest deficiencies in any early system-description. The

present paper-suggestsithe. kinds of information-about-the uncertainty which

might be shown-to. defense -plémné'rs'- and offers 4 technigi:e to geénerate such

 information.
SOURCES OF UNCERTAINTY

‘Uncertainties in advanced Systems cost estimates arisé from many
sources. Examination of such sources has revealed that they may be divided

into-two basic categories. The first category, examples of which are shown

in Table I, consists of those types of unéertainty which aré amenable to plan-

ning décisions, that is, those types over which décision makers exercisé
control. The second category, examples of which are shown in Table II, is
the class of uncertainties which is beyond direct control or explicit planning

during the. conceptual phase of a system,

-1-
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EXPRESSING COST UNCERTAINTY

Because of fundamental differences between the two categories of uncer-
tainty, different techniques are needed in déaling with them. Category I
unceitainties might best be represented by exhaustively identifying all signifi-
cant competing design alternatives and by providing the decision maker with
the économi¢ implications of each planning choice. Nevertheless, because of
the large lead time between the generation of advanced system cost estimates
and-the date by which the system achievés operational status, a large number
of residudl uncertainties, i.e. , Catégory II uncertainties, will, in genexal,
characterize €ic¢h of the identified system alternatives. It would thus be
desirable to convey to the decision maker 4 meaningful numerical range
describing the magnitudé of the effeét on the total system cost of the -simul-
taneous presence of all the residual uncertaintiés in the SySt_ae_m elements. In
addition, numerical ranges describing. lower-levels of cost aggregations than
the-total system are valuablé o expose major sources-of incertainty. Finally,
to support statistical analysis, it woiild'be useful to:show-the relative likeli-
hood that different cost magiitudes will bé the actial ultimate total system
cost. This report is addressed to-genérating this information.

Table I

Examplés of Sources of Tuteyory I Unéertainty

System Performance Requirements*

Examples: coverage, numbers.of users served, survivability, reliability,

flexibility, growth potential, reaction time, range, warning time.
N . 13 - .

*Althotigh these requirements depend on factors (such as the enemy thréat and
existing technology) which a decision maker doées not conirof, he does generate
an explicit and conscious statement of the performance requiréments for the
system on the basis of a given set of constraints and goals; thus system per-
formance requirements are included in Category I uncertainties.

-2-
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Table I (cont'd.)

Implementation Plan

Exampies: schedules, amount of in-house vs. external management,
number and éxtent of competing contractor studies during the program defi-

nition phase.

Configuration (Resource Inventory)

Examples: number and kinds. of hiardware packages, the nature and éxtent

of software, and the quantity and quality of personnel. **

Operational Conicept

Examplés; modes of op:ration during varying periods (e.g. , trahquil,
fcrisis‘, tFans and post attack), amount of peace time exercises.

-Mﬁ_‘intenancé Concept

Examplés: contractor vs. military maintenance, number of shifts.

‘-I.Og"istiészCoricggt
Exaniples: number, size, and‘locations of warehouses to maintain -supply
linie, quantities and:types oi stocks and-spares-to be stored-at each.

Training Conéept

Examples: in-housé vs. contractor training, formal vs. on-the-job

training.

Funding Schedule

Examples: schedaling of otligational authority,

#*Ordinarily in the conceptual phase, these car he cnly yrossly defined.

i
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Table 11

Examples of Sources of Category II Uncertainty

|Price levels for equipment and contractor services

Iproduction cost of developed items

Extent of R&D-effort. needed for desired equipment development and resulting

|tions.and maintenance concept

Exact quantities-and types-of pérsonnél required to effectuate a given.opera-

|spares, -documentation, éte.

Exact quantities:and types of support equipment (AGE), initial and follow-on

Manpowe‘raand computer time requirements for system design and management

Exact hardware and software design specifications for operational system

A FEW EARLY APPROACHES TO DESCRIBE CATEGORY II UNCERTAINTIES
A.common pragtice.in cost estimating is to-study the niture.and:magni-
tude of trie uncértaiiity. in each of the system eost input éléments® (see
‘Glossary) and footnoté the eéstimate with statements about possible variations
in their values. This-procedure serves to put the usér of a cost-estimate on
rotice that the single value shown for total system cost is subject to error,
and helps to focus attention on the major sources-of uncertainty. Neverthe-
less, such information do€s not reveal the extent to which the estimated total

systém cost is likely to deviate from the actual cost..

In order to providé some estimate of uncertainty in total systém cost,

analysts have attempted to maké an astute guéss about the variability of such

*For .Simﬁlic'ity, the abbreviated form, cost element, will be used subse~
quently throughout this report.

-4~
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cost and record the result for the decision maker's reference. The analyst
performs this operation by mentally assessing the combined impact of all
sources of dncertainty in all of the cost elements. For a typical size system,
such practice strains the faculties of even the most gifted analyst, and hence

the results are of questionable validity.

Another expedient used in quést of more reliable information about the
variability in total ¢osts requires the analystto specify a likely range for each
of the cost elements; then two additional total system cost estimates can be
computed, one being the sum of the lowest values for all the cost elements,
and the other being the sum of the highest values. In this manner a range is
established for the total system cost. Howéver, such a range is subject to
strong criticism. It is self-evident that the possibility that all elements will
actually attain their lowest values (Or their highest) is very remote. Hence,
such 4 range is-a serious overstatement of the magnitude of likely variability
in total system c¢osts.

A more precise téchniqué is therefore needed to translaté the analyst's

feelings about the uncertainty in all thé cost elements into a statement about

the uncertainty in the total systein cost. This paper has béen written to

suggest one such téchnique.
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SECTION I

DESCRIPTION OF THE PROPOSED TECHNIQUE

GENERAL

Uncertainty in each of the cost elements is described by treating the
elements as random: variables. A subjective distributibn[zj for each element
is provided by the analyst to represent his feelings about the relative likeli-
hood of all-feasible values. The burden placed on the analyst, however, is
minimized by requesting that he prcvide only four numbers which are esti-

mates. of four parameters characterizing the shape of the distribution curve.

From the four parameters the entire distribution is inferred. This is
done by assuming a linearly scaled beta function (see C_?rlo‘ssary) which satis~
fies the analyst's inputs. The elemept distributions are then combined in
accordance with a cost structure l:51co produce the probability distribution
for the totdl system cost and equivalent distributions for intérmediate levels
of cost aggregation. Cumulitive probability intervals and relevant summary

statistics {(¢.g. , mode, mean, or median) can be generated from such dis-
tributions.

LIMITATIONS

The procédure described is suited for direct application in the following
situation: (1) the probability distributions specified in the input data are uni-
modal; (2) oniy additive and multiplicative operatjons are involved in relating
element costs to total costs; (3) elements which are multiplied together are
independent; and (4) elements which are added together are either independent
or linearly dependent (see Appendix I).

o~
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Procedur... are presented for permitting application of the technique

in some situations which do not satisfy the above requirements.

INPUTS PROVIDED BY THE COST ANALYST

(6]

To cope with uncertainty in schedule estimates, PERT " - has adopted
a procedure which utilizes a scaled beta function and requires that the analyst
furnish three numbers. to specify its form. These three numbers are esti-

mates of the lowest, X_ , and highest, X

L H values (lower and upper

1 percent tails, respectively) and the mode, XP , {(most probable value).
The PERT procedure assumes that the distribution's standard deviation
cah always be satisfactorily approximated as one-sixth of the total range,
i.e., 1/6 XH ~ XL . However, since 1 percent tails are difficult to esti-
mate accurately, standard deviations calculated in this manner may be unre-
liable; in addition, this method 6f corputation makes no allowances for
widely dispersed or sharply peaked distributions.* Hence, the resulting
curve often grossly distorts the analyst's actual feelings. Furthermore, this
restriction on the standard deviation seriously reduces the variety of shapes

which are inherent in the beta family.

To overcome such shortcomings, it has been decided in the proposed
technique to specify a fourth humber, the 80 percent central range. The
80 percent ceatral range, CR , represents the range of the estimated
variable which contains 80 percent of the probability. It is calculated by
subtracting the lower end of the range (the lower 10 percent tail) from the
upper end of the range (the upper 10 percent tail). By permitting the analyst

the freedom of specifying CR , more representative distribuiions often can

*Statisticians refer to this phenomenon as the distribution's kurtosis.

-
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result. For example, the rectangular, normal, and gamma distributions may
*
all be accurately portrayed. Fignres 1 and 2 are provided to demonstrate

some of the varied shapes that tle beta distribution can assume.

Hence, for each cost «1>ment, the aazlyst provides four values, XL ’
ok
XH N XP , and CR » to deserike the ancertainty,  This information is

based on the analyst's assessment of the prcbable sources and magnitude of

the uncertainties., For such assessment, the aialyst not only vses relévant,
processed, historical data, but obtains and evaluates the opinions of experts

and takes into account any discrepancies.

At this point it might be well to discuss the analyst's willingness to
provide more data than in the past. It is quite probside that the analyst's
reaction to such a situation wili be related to his integrity. If he sincerely
believes that extensive uncertainties enshroud the value of a particular cost
element, it will be very difficult for him to specify a singlé value. Hénce,
it is the author's contention that when uncertainty exists, the conscientious

cost analyst will appreciate the oppariunity of being able to stipulate ranges.

DETERMINING UNCERTAINTY IN TOTAL COSTS

Random variables representing cost elements may be comhined in
accordance with a cost structure to produce a random variable to represent

the fotal system cost. By knowing (1) the distributions of the cost elements,

* The linearly scaled beta function is perhaps more generally known as a
Pearson I curve. The gamma and normal are limiting forms and hence can

be approximated with any desired accuracy. The rectangular distribution is
a special case of the beta.

**When iue uncertainty is insignificant, only one value need be specified.

This value should be set equal to the mwenn aad all higher moments can be
taken enual to zero. -
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(2) the nature of any statistical dependence which may exist among them, and
(3) the functional relationships which reflect the cost structure, the distribu-
tion for the total system cost may be determined.

To satisfactorily treat uncertainty in advanced system costs, it is con-
sidéered a:dequaterto represent the cost structure by products and sums of

random variables where multiplied variables are independent and added vari-

ables are either independent or linearly dependent. The concept of linear

dependence, as used in this paper, is defined in Appendix 1.

The additive~multiplicative restriction on the cost structure is not
believed to be a very serious handicap, since, in the author's experience,
these operations are most frequently encountered in costing advanced elec~
tronic command and control systems. However, it is possible to process

more general functional relationships, as described in Appendix II.

The limitations placed on-intervariable depéndénce are also believed
not to be highly restridtive. Anpendix I shows that in many situations depend-
ence can be avoided completely by the proper choice of cost element vari-
ables. However, in those instances whereé this expedient is not possible,
linear dependence, in the author's opinion, will generally be adequate to

reflect the statistical relationship among variables.

As demonstrated in Appendix 1, the sum of linearly dependent variables
may be expressed as sums and products of independent auxiliary random
variables. The appendix further describes the information which the analyst
may provide to determine these auxiliary variables. Thus, in a great many
circumstances, the author believes that the cost structure may be satisfac-

torily represented by the sums and products of independent random variables.

~11l~
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It is well known that when independent random variables are added the
distribution of their sum can be determined by convolving the component
distributions. Similarly, when independent random variables are multiplied,
the distribution of their product can be determined by an analogous process
(which is portrayed in Appendix I). Neverthcless, since the input data about
the uncertainty are only approximate, it was felt that such elaborate opera-

- tions were not warranted. Instead, thé decision was made to use moments

to summarize the distributions. This procedure is discussed in the following
section. '

UTIH?ATION OF MOMENTS TO GENERATE THE DISTRIBUTION OF TOTAL
COSTS

To treat uncertainty in PERT, the mean and standard deviation for each
element distribution is computed and then used t6 compute the mean and
Standard déviation for the total. The central limit theorem, which states
that under suitable ¢onditions the distrilntion réeprésenting the sum of random
variables tends to the normal, is then customarily invoked. Since the normal
distribution is completéely specifiéd by the mean and standard deviation, the
distribution of the total is thus determined.

The degree to which the normal faithfuily portrays the distribution of
the sum depends on many factors, including the number of variables added,
the shapes and relative sizes of their distributions, and the degree of
dependence among them. It is not clear, therefore, that total system costs
will always be adequately represented by the normal, and it is even less
apparent that the distribution of intermediate levels of cost aggregation will
be adequately represented. The mean and standard deviations themselves

provide no clue on the reliability of the normal approximation.

-12-
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Figure 3 provides a graphic portrayal of the kinds of probability state-
ments that can be made for a normal distribution. It also shows the upper
bound for confidence statements that can be made for any distribution. In

addition, it depicts an estimated upper bound for unimodal distributions.

Because confidence statements for the normal are so much tighter than

for either of the indicated upper bounds, use of the latter bounds will fre-

‘ quently grossly overstate the uncertainty, Furthermore, the mean and

standard deviation provide no insight about skewness. Thus, it is desirable
to generate more information about the uncertainty in cost aggregations

before attempting to0 construct a distribution.

To cope with the above situation, it was decided to use the first four,
instead qf just the first two, moments (such as the mean and standard devi-
ation). In this regard, additive and multiplicative moment sets were
employed. These are defined in the glossary and their properties are
demonstrated in Appendix III. The nth z2ditive moment for a sum of inde-
pendent random variables is $§imply computed by adding the nth additive
moments for each of the variables. Equivalently, the 'nth multiplicative
moment for a product of independent random variables is the product of the

nth multiplicative moments of each variable.

The distribution for totzl system cost (and for intermediate levels of
cost aggregation) is constructed by determining the linearly scaled beta*
(a four-parameter function) which has the same first four moments. The

various mathematical operations that are involved in this process are

¥If the beta distribution cannot satisfy these moments, the appropriate

member function from the Pearson family may be used {(see Table 43,
Ref. [7]).

-13-
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described in Appendix IV, The integrity -of this procecire is demonstrated in
Appendix V by comparing the resultant distributions with the theoretical

curves.
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SECTION III

COMPUTER PROGRAM

INTRODUCTION

A program has been written for the 7090 to facilitate the translation of
the analyst's feelings about the uncertainty in each cost element into the
parameters of an approximating linearly-scaled beta distribution for the cost
total and sub<totals, These parameters are used to generate upper and
lower bounds fo a cumulative probability intérval of any desired size. The

program is composed of three discrete parts which are described below.

The reader is referred to Appendix VI for a more detailed description
of the program, including an explanation of the mechanics involved to operate
it on the MITRE 7090 Facility.

PROGRAM I

Program I accepts as inputs those four parameéters of the linearly
scaléd beta distribution which are provided by the analyst. The reader will
recall that these are the most probable value, the lovest and highest values,
and the 80 percent central range. With this information, the four additive
moments are computed and presented as an output. The input is put on
punch cards and the output is printed. The reader is referred to Figure 4
for a graphic description of this program.

PROGRAM I
Program II accepts the additive moments computed by Program I for
all of the cost elements and computes an equivalent set of moments for

-16-
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Xpo X0y Xy 8 Cy ’j LINEARLY SCALED X, Y, v, & W )

SUBJECTIVE ESTIMATES BETA DISTRIBUTION {FIRST FOUR ADDITIVE
PROVIDED BY ANALYST | MOMENTS)
FOR EACH COST ELEMENT

X, MOST LIKELY VALUE (MODE)

X, 8 X, LOWER 8 UPPER 1% TAILS

Ca 80% CENTRAL RANGE (UPF"ER 10% TAIL MINUS LOWER 10% TAIL}

X = ist ORIGIN MOMENT = MEAN (EXPECTED VALUE)
¥ = 2nd CENTRAL MOMENT = VARIANCE (STD DEVIATION?)
V = 3rd CENTRAL MOMENT

W: 4th CENTRAL MOMENT minus Y*

Figure 4. Graphic Representation of Program 1

cumulative costs at all desired levels of aggregation. An effort was made to
keep the program sufficiently flexible so that a large variety of arithmetic
arrangements in the cost structure could be handled. The input is inserted
on punch cards. The output, specifying the additive moments of aggregated
costs, is furnished on nunch cards (which can be used as an input to Program

Ol and is also nrinted. Figure 5 depicts the program,

PROGRAM II

Program III converts the additive moments computed by Program II
into the parameters (see Glossary) for the linearly scaled beta distribution.

-17-
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X, ¥, v, & W

FOR ALL COST ELEMENTS
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CosT
STRUCTURE

X, Y.V, 8w

[resTRIGTION "ON COST STRUCTURE:

—
FOR EACH SUBSYSTEM AND
FOR TOTAL SYSTEM COST

SUMS AND PRODUCTS OF INDEPENDENT RANDOM VANABLES]

Figure 5. Graphic Representation of Program 11.

Yo

It further determines bounds for any y cumulative probability interval by

finding limits for the 1 - y/2 tails.* Inputs are on punch cards and the

output is printed. Figure 6 depicts this program.

*Exact upper and lower bounds to these tails can be computed directly from
the first four moments to reveal the maximum error in the beta approxima-

tion, [8]
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SECTION 1V

USEFULNESS OF THE RESULTS

_ Information provided by the technique proposed herein furnishes a better
single value {as-compared to conventional estimates) to represent the most
likely cost of a military system and, in addition, furr:shes a quantitative

statement about the nature and extent of the uncertainty.

Conventional estimates typically introduce the most likely value for
each cost element into the cost structure to determine the system's total
economic implications. Nevertheless, since the distributions for the cost
elements are generally skewed upwards, the single value thus computed for
the system often has very little likelihood of occurring and may constitute a
serious understatement of the true cost. When a single value is required
from the cost analyst, the mean or the modal value (which are frequently
relatively close for the total system cost) is generally a more meaningful (2]
figure to specify. In systems which are charé.cterized by considerable
research and development, these latter values have been shown to exceed the

conventional estimate by more than 30 percent.

Bracketed probability intervals provide a quantitative measure of the
range of the uncertainty in aggregate costs. Such intervals provide insight on
whether or not the accuracy of a cost estimate satisfies the requirements of
its intended applicatioh. The decision maker may establish in advance the
accuracy criterion which must be met. The bracketed interval would

disclose whether the eriterion is satisfied.

~20-




Bracketed probability intervals for subsystem costs and other inter-
mediate levels of aggregation serve to identify areas of major cost uncer-
tainty. -These are areas whicﬁ might benefit from subsequent efforts to
refine costs. However, consideration should be given to the sensitivity of
the uncertainties to more intensive study, since substantial additional

probing will not materially reduce certain types of uncertainties.

The probabilily function can be used to make computations which may
provide extremely useful information to the decision maker, For example,
when two or more equal effectiveness, alternative configurations are being
considered for acquisition, one can either immediately select the system
with the lowest expected cost or defer a decision, pending the collection of
more information. By knowing the entire probability function, it is possible
to compute (1) the probability that the alternative having the lowest ultimate
cost will not be selected by using the lowest mean criterion, and (2) the
expected size of the cost premium which results from not having perfect

(2]

the maximum effort that should be devoted to refining cost or to pursuing
(9]

information. This expected loss (premium) can be used as an index of

exploratory R&D. Conversely, this expected loss represents the maxi-

mum expected gain from deferring immediate action,

-21-




A B 1 L 5 VIR, SIS 8

T T S

——— A e

wfr l

. SECTION V

VALIDITY OF RESULTS

The reader is no doubt well aware of the fact that a conventional cost
estimate is no better than the quality of i@s inputs. The analyst's ability to
identify all cost contributing elements and to properly assess their economic
implications bears directly on the validity of the end product, Similarly, in
appraising the sources and mag‘nitudeé of the uncertainties which influence
each element's cost, there is no satisfactory substitute for reliable -data.‘
The cost analyst must carefully and astutely search out all significant factors
which give rise to system element cost variability and reflect the mag'nitud'e\
of their effect. The author wishes to point out, however, that although th15
doés place an added burden on the analyst, he will probably -derive greater

satisfaction from pursuing this task than trying to generate a smgle number
in the face of imperfect information. ‘ -

1t is true that the analyst's inputs to describe the uncertainty are sub-
jective. Nevertheless, because of the general unavailability of completely
relevant historical data from which the cost of advanced systems can be
accurately gauged, single value estimates, themselves, contain varying
degrees of subjectivity., What is perhaps more important, however, is the
fact that although cost analysts in the past have been fully aware of the
presence and character of elemuvnt uncertainties, the means did not exist to
properly assess their cumulative impact on the total system cost. Hence,
more often than not, only an extremely unreliable conjecture about total cost
uncertainty cuuld be passed on to decision makers. By applying the proposed
technique, the cost analyst is permitted to focus his attention on appraising

-22~




the uncertainties surrounding the individual cost elements, an area where he
is believed more qualified to judge uncertainty; and standard statistical

methods are then employed to measure their aggregate implications on the
system total.

If the analyst inadvertently neglects to consider significant sources of
uncertainty or has even forgotten to include some cost elements, the results,
naturally, would understate the magnitude of the uncertainty and bias the dis-
tribution. Oversight of relevant cost areas is, of course, an error which
~ has just aé’ serious an effect on single-value estimates, and hence, much
work has been andis -being done to-minimize this possibility. Similarly,
“work is needed in developing a capability-to realistically appraise the sources

and magnitude of uncertainties.

\It s the a.uthqr"s contention_' tfxat any information the analyst can provide
. regzir—ding-‘thé ~r‘m:tgnitv.lde of the uncertainty (even if occasionally in the form of
an e&;éated_g_ueﬁ)' 'ig better thafi'no _lmoWledge at all. The proposed technique,
in its present form, is regarded as merely a first step in the direction of
providing decision makers with more meaningful information about the vari-
-ability in total system costs.

-23~
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SECTION VI

AREAS OF FUTURE WORK

Many refinements of the technique described herein will probably
germinate from the experience gained in its successive application., Two
specific areas where more intensive study seems to offer large potential
rewards are: (1) development of techniques to aid in obtaining guantitative
information about the cost uncertainty from experts; and (2} development of
analytical tools that will permit fuller utilization of the generated statements

about the uncertainty in making planning decisions,

-24-
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APPENDIX I
DEPENDENCE AMONG VARIABLES

AVOIDANCE OF DEPENDENCY

In a typical cost estimate, there are certain cost items which one

. normally would expect to be dependent. An ex.imple is mission equipment

cost, initial spares cost, and maintenance cost, Nevertheless, if the total

of these three items is determined as below

NxU_ [1 +L01Py (1 + Ys)l '

where
N = number of units;
Uc = equipment cost;
PM = percentage maintenance costs are of equipment costs; and
% = ratio of spare costs to maintenance costs,

the component variables in the above expression may frequently be regarded
as independent, When the above technique can be employed, it is possible to
avoid other means of specifying the nature of the dependency.

LINEAR DEPENDENCE*

Definition and Properties

When two cost elements are dependent, the relationship between the

elements can often be satisfactorily expressed by the following equality:

* The reader should not confuse this concept with the term as applied to sets

of matrices or polynomials, Dependence here is concerned “vith the statis-
tical relationships among random variables; see Glossary.
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x2=<Ka+€>(xl-“l+Kb>+Kc ’

where
x1 _‘ and xz =  random variables representing the cost
elements;
€ = a random variable of zero mean and
independent of X
M =  the mean of x1 ; and
Ka’ Kb’ and Kc = constants.

In the above situation, X, and x2 are said to be (for the purposes of this
report) linearly dependent, The conditional distribution for X, given X
has the following properties: () when X, equals its mean, the distribution
for x, can be specified without constraint; and (2) the distributions for other
values of x, are represented by a linear shift and expan‘sion (or contraction)
of the coordinates.* The recader will note that the sum of linearly dependent

random variables xl and x2 becomes:

X, *+ X —(K +1+ )(xlﬂcb H) K +K +u o
which is composed of independent random variables.

Determination of Independent Variables
The variables Ka ) Kb s Kc and . are determined on the basis of

information furnished by the analyst. Although there is more than one manner

*Thus

%GV <b+1/>

TG AL {CH

-26~
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of eliciting the necessary information, only one will be considered in this

report,

The analyst is called on to describe the conditional distribution for

, given that x_ is at its mean value, Wy e He can do this by specifying

X
2 1
values for the parameters of the linearly scaled four-parameter beta, From

these parameters, the four additive moments A1 , A A3 and A 4 can

2 ’
be determined. The analyst is further requested to specify the amount by

which the conditional mean of x_ will change when X) deviates from My

2
by some fixed amount, The ratio of these two items (change in Mo/1 /amount

X deviates) will be called m, Finally, the analyst will be asked to state

: y
the amount by which the conditional standard deviation of X, will change

when X, deviates from e The ratio of these items (change in 4 2/1 /

amount X deviates) will be called m .
. o

The resulting relaticnships bécome:

Ka=mu =;1- c=A1-’KbKa
o]
A A
o m2 o3 . 3
El—o Ez-mcI Ea—Kb3 E4 Kb4 ,

where the Ek terms are the additive moments of .

In the special case where m is believed to be zero, the following
o

relation should be used:
% <m K ()t e

In this case,




If the analyst prefers to specify m, (the ratio of the change in the
conditional mode of x_ ‘to the deviation of x, from to m , the
2 1 M1 M

following equation may be used:
m

m = + . -0 ’
[ A Y
where
A is the difference between the conditional mean and mode of

X, . given x, =

More General Form of Linear Dependence

let X, 0 Xy s oees X be random variables which are linearly
dependent on the independent random variables a, a2, veees a_, Itis

desired to express the sum
n

)

k=1

as the sum and product of independent random variables, If each x can be
expressed as

m
% ’J.Zl (Bt o) G- ¥ B)* Gy

where

Ak) ' Bj , and ij = constants;
uj = the mean of aj ; and
i ( = a random variable of zero mean and

independent of all a's and other .'s;

then the sum may be expressed by the following:

-28-
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n n
<j Syt Bj) Z (Ak] +€kj> + Z ij
k=1 =1 k=1 k=1

which is the desired result.

Dependence Among Additive-Multiplicatis e Combinations of Independent
Eléments

The situation sometimes arises in which independent random variables

reappear in more than one expression. A simple example is as follows:

Xp = xlx2 + x1x3 + xlx4 .

where the xk terms are independent random variables.
The terms in the above example, therefore, are not independent,
This situation, however, may easily be handled by factoring x, so that

= +
Xp 5% Xyt X Xg o

More complex situations, however, such as

I L S R o

cannot be dealt with as simply since complete factorization[m] is not
possible, In this case it is necessary to take advantage of the fact that
the expected value for the sum of random variables, whether or not they
are dependent, may be computed by adding their expected values, The
is

reader wili recall that the kth multiplicative rioment for xT

. L ® ok
Mg Xp o' g *r

where E designates the expected value.

|
=

-29-
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Hence .

M (x,a = E Q(lxz XX, + x1x3> .
The preceding expression may be evaluated by expanding the argument and

then substituting for the origin moments involved, For example,

_ 2. 2.2 2.2 2 2 2
M2 xT —EGl x2 +x2 x3 +x1 x3 +2x1 x2x3+2x2 xlx3

rax g, )
= My M, (55) * My (i) My (i) Yp(r )My ()
)
o)) )
23, M i) M, ()

This process is most readily executed by automated means,
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APPENDIX II

PRODUCT OF INDEPENDENT RANDOM VARIABLES

If x. and x_ are two random variables with a joint probability density

1

function of P_, (%, x2> and z represents some function* £ x,, X, , of

these two variables, the probability density for z is

+®
p(z) = f ) P, [gl (z, XZD’ .‘:2]

dx2

ksl
8%

the function that results from solving { Q{l, x2> for

gl (Z, xz)
1 2

[ = the derivative of g, (% x.) hold
(3"1 /B?D the derivative of g (z, %) holding x, constant,

where
X, intermsof z and x_ ; and

In the case under consideration, f(xl, X’D KR W Q‘l’ x2> =
Py G{l) P, <x2> , and g (z, xz>= z/x2 . Thus

+ll)
p(z) = f oy <Z/x?>p2<xz>xz-ldx2 .

If pl(xD = p, G?D s 0 when their arguments are either less than some
non-negative number, a, or greater than a + 1, the distribution for z

bhecomes

* This function must he differentiable and single~valued over the ranges of

x; and Xp where P, (X3, X) is nonzero, If the inverse function
g1 gz, X9 is not single-valued, then the integral for p(z) must be
appropriately broken into segments and the resulis added,
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0
-1 )
p(?-)=f X pz/x;p %\ dx
m p 2 1 2(2) 2’
wiere
L=a, U=z/a when z < a(atl) ; and
Z_,
L=;+-i- U = atl, whenz a{at+l) ,

and 8 gz ¢ (@)t

If we now define the variables and functions as follows:

4 +
1nx1=u1]n-"-‘-ga-1-+1na, 1nx2=u21n?‘§l+1na, Inz=w

-+
ln'g’-;l +21lna

P (%) 8 (1) Py (35)= 8, (3g) Pp@ =8,

it follows that

U
8" = 1n G‘?’) f Lu 8 (w-u2> 8, (uz) du,
u

where
Lu=°’ Uu=w whenw < 1 ; and
L =w-1l, U =1 whenwy1.
u u

The ranges of the variables are: 0 ¢ uslhogu gl and
0 LW 2.

If uy and u2 are considered as independent random variables,

then w = u1 +uU . This relationship was utilized in Section IV when




computing the exact solution for those illustrative examples that involve
produét_s.
It becomes evident from the central limit theorem and-the latter

relationship that the limiting form as n . 4 of the distribution for

n
m N
k=1 L

(where the xk terms are independent random variables, with a common
distribution defined for positive \values) is log normel, The log normal is,

of course, a skew unimodal distribuiion.
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APPENDIX Il

MOMENTS FOR SUMS AND PRODUCTS OF INDEPENDENT VARIABLES

The properties ascribed to the additive and multiplicative moments
defined in the glossary will be demonstrated below,

ADDITIVE MOMENTS

The additive moments A1 . A2 . A3 ,and A n for the sum of inde=

pendent random variables x1 and x2 are defined as follows:

) 3
A3-—ps —Eé{l-u1+x2-p2> ;and

@ L @ o e o N ag2 o e o N2
Ay =g 3[“s } E(%l My *Xg7g ) ~E (%1 My ¥y “é) .

where
gs(k) = the k& origin moment of the sum
ps(l_‘) = the kth central moment of the sum
g and My = the means of x1 and xz, respectively
E = the expécted value

| -34-




Evaluation of the right-hand members of the above equalities yields

E (k%)) =E(x)E (XZ>=°‘1(1) L
2 2 5
E 611g1+x2‘u2> =E C‘ful) +2E Ccl-@ E @-H 2>+ E(xz-@ :
g 2 .2 . o

= E 61-“1) + EQZT“Z) .,

@, @
Bl B ) 5y

4 + 3E é‘l’uDE é‘l_l-lDz +E xl_u1>3’
= E(Xl’ub_a + E 6‘{;11)3 .

3 3
@, O

E Q{l-ufxz-uz) . 3E2("1‘H 1+x2-p2>2=EC( 1-“94
o' snd)
+6E () By ?
48 G) By
ey




IR S PP IS PN SR

PR LN

2 2
2 2 2 2
] 3{u1< )} RCICE 3[u2( )] ,

4 2%, @ 2)| 2
f_ul()"’[ul()] +u2()_3[u1()] ,

where _ )
.@'i'(k), az(k)' = th_e kth bl'igi__rx moinents of x and Xy respectively;
. eud ' - |
W W gt S,
iy K Hg —- -the k cen_tral moments of xl_‘and_,.x2 respectively,

It-éan h(_e’,.:ééen from the above, that-the kth';ddiﬁ‘ve moment for a sum

of independent random variables equals the sum of the kth additive moments

~o£ the variables:-.

MULTIPLICATIVE MQMENTS
The multipiicative moments M. , M_ M_, and M, for the

2 3 4
product of independent random variables X and X, are defined as
follows:

- & _ . k
M =a, =E 61 "2) ’
where

up(k) is the kﬂz origin moment of the product.

Evaluation of the right-hand member of the above equation yields:

E xl-x;k=EQ;Dk E@Q“:alﬁ‘)az(k) ,

where ) ®) @
ay and ag are the ¢~ origin moments of X, and Xy s
respectively,
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It is obvious, therefore, that the lgth multiplicative moment for a
product of independent random variables equals the product of the kth multi-

plicative moments of the variables,

CONVERSION BETWEEN MOMENT SETS

The following formulas show additive moments may be generated

from multiplicative moments, and vice versa:

; 2 3
= = = +
) Ml Al, M2 A2 + A1 , M3 A3 +.3A1A2 Al R

_ 2 2 4 .
M4“A4+3A2 +4A1A3+6A1A2+A1 H

_ _ 2 - ~ 3
Ap =My, Ay =M, - M, Ay =M - SMM, + 2M)

o _anl. 2y aard
A= M, - 3A° - AMM, + M "M, - 3M ",

o e




APPENDIX IV

DETERMINATION OF THE PARAMETERS
FOR THE APPROXIMATING LINEARLY SCALED BETA

Given the first four additive moments, a linearly scaled Beta distribu-
tion is uiiquely defined, To determine the four parameters, a, 8, &, and

b (see Glossary); tbe_ following procedure may be used,

1) Solve the following two equations simultaneously for q and g:

2
A 4w-p’@rpr3

3 }
A @ ) @)’

A, sesm fpawa?s e @) el
a2 C(@B3) (Br1) (#BH4) (0+B+5)
where
0.<g when A, >0;

3 A
a =BWhenA3=0; and "

a > pwhen Aa <0,

2) Substitute o and g into the equations shown below;

- |"‘n VAZ
a=A1-‘--,/A2-5; b= 'an—
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APPENDIX V

- ILLUSTRATIVE EXAMPLES

INTRODUCTION

The examples shown in this appendix demonstrate, under a variety of
situations, the integrity of the approximating procedures (see Section II)
built into the computer program, The results of the procedure are compared
with the results obtained from actual performance of the convolution operation
for the sum of independent random variables and with the operation described

in Appendix II for the product of independent random variables, The latter
operations were performed on an analog computer,

EXAMPLE ONE

Four independent random variables describing the uncertainty in cost
elements all have the same distribution. This distribution can be represented
by a linearly scaled beta with the following parameters: the most likely cost
is 100 thousand dollars, the most optimisiic cost is 50 thousand dollars, the
most pessimistic cost is 250 thousand dollars, and the central range is 110
thousand dollars, The uncertainty for the iotal of these four costs can be

examined, A plot of the probability distribution for the total cost is presented

in Figure 7,

EXAMPLE TWO
Two independent random variables, describing the uncertainty in cost

elements, have the same distribution, which can be represented by a linearly
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scaled beta, The probability distribution for the sum of the two costs is
desired,

Four sets of parameters for the linearly scaled beta are considered.

(The values for each parameter are shown in thousands of dollars,)

' Optimistic (X, ) $i%¥hble (Xp)  Pessimistic (X,) FEnT

50 100* 150 64

i 50 100%* 150 19
50 100%*x* 250 110

50 100%**x 250 38

The distributions for total cost appear in Figures S'to 11,

EXAMPLE THREE

Two independent random variables, describing the uncertainty in
planning factors, have the same distribution which can be represented by a
' linearly scaled beta, The most pessimistic value for each of the random
' variables is 200 percent of the most optimistic value, The probability
distribution for the product of the two costs is desired,

*The normal:zed form of this distribution appears as Curve III in
Figure 1,

**The normalized form of this distribution appears as Curve I in
Figure 1,

*xxThe normalized form of this distribution appears as Curve III in
Figure 2,

**+¥The normalized form of this distribution appears as Curve I in
Figure 2,
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Figure 8. Plot of the Sum of Two Independent Random Variables
with Beta Parameters
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Figure 10. Plot of the Sum of Two Independent Rardom Variables
with Bets Parameters
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Figure 11. Plot of the Sum of Two Independent Random Variables

with Beto Parameters

~-46-

100 140 B0 220 260 300 340 380 420 460 500

-



ARt d A IS A A S A ST AT G A A SIS A A A A AAA A b «44'(1

j
)
|
I
!
i
i
i
|
|
|
|
I
I
I
I

~ -

.
~

Four sets “"ofgparaméte rs idr{he; linearly Scaled betq are considered,

b e, Pesimsiers,
SO - 2 _
. 1 e - E g
1 losees 2
Y Loswssk 2

The distributions for the producis-appear in Figures 12 to 15,

EXAMPLE FOUR

Central
Range (Cp)
64
«19.
.55

«19

This example is-similarto Example‘Three with the exception that the

in@'s’t pessimisti¢ value in this case is. 120 percent of the most optimistic

‘Qptimistic (X, )
5
5
5
5

%@-P) Mxﬂ)
5.5+ ®
5. H%% 6
5. 25%** °
5, 25%% % °

The distributions for the products appear in Figures 16 to 19,

*Normalized form,

*#*Normalized form,
*x*Normalized form,
**xxxNormalized form,

Curve III in Figure 1,
Curve I in Figure 1,
Curve III in Figure 2,
Curve I in Figure 2,
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Figure 12. Plot of the Product of Two Independent Random Variables

with Beta Pdrameters
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Figure 13. Plot of the Product of Two Independent Random Variables
with Beta Pcrameters
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Figure 14. Plot of the Product of Two Independent Random Varidbles

with Beta Parameters
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Figure 15. Plot of the Product of Two Independent Random Variables

with Beta Parameters
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Figure 17. Plot of the Product of Two Independent Random Variables
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Figure 18. Plot of the Product of Two Independent Random Variables
with Beta Parameters
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APPENDIX VI

DESCRIPTION OF THREE 7090 FORTRAN PROGRAMS

INTRODUCTION

This appendix describes a series-of three 7090 FORTRAN programs
(see Fighre 20) which convert a cost analyst's subjective feelings about
uncertainty in cost éstimates for system elements into quantitative data to
express the uncertainty in the total: system cost, ‘

DESCRIPTION OF THE PROGRAMS

Program I

This program (see Figiré 2i) accepts.as'inputs-the foiir parameters
Scaled beta-distribution which: approximates ‘the distribution deScribéd by the
parameters for the cost of the:element, This distribution-is presented in
terms of the parameters describing the shape-of the curve and the first four
additive moments of the distribution,

The four input parameters are:

{a) XL - the lowest cost (lower 1 percent tail);
(b) xu - the highest cost (upper 1 percent tail);
(c) xp - the most probable cost (mode); and
(d) CR = the length of the 80 percent central range
- (upper. 10 percent tail minus lower 10 percent tail),

+56-

Y




PROGRAM I

INPUT

PREPARE
PROGRAM I

CARDS

!'--—'-'-----a.

———-—--l

READ INP
XL, XM,

XP,.CR

UT CARDS

PROCESS

X, Y,

COMPUTE

v, W

- O™ WD o WIS EED Wb W GmER GRS TEE U G G S

ol PRINT OUT |

OuTPUT

L s - - - — s - .,a.'

| Pusicw ourpuy
SETUP CARDS|

B

_PERFORM
" OPERATIONS
ON .MOMENTS

PRINT OUT

ouTPUT

PROGRAM TIT
OSRAMTE

l

|

|
¥ | L.

l;

|

!

—————-

1

THSERT PUNCHED
CARDS OUTPUT
INTO PROGRAM I

——

PROCESS

:

" PRINT OUT

OuTPUT

|
i
!
|
|
|
J

Figure 20. Block Diagram for Progroms 1, 11 and 111
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e in b b AT, A LISy TR e 6 e Sarr

READ NEXT INPUT.CARD
COMMENT XL, XH,XP, CR

END oF DATA
CARDS CALL

WRITE. oUY -
JJ COMMENT, SET UP.
“|FORMATS & WRITE

EX'IT ‘OUT INPUT DATA |-
P v
‘| COMPUTE .
x 2 -XB=Xb
XH-XL

CRN'= CR/XH-XL .

fue15o%

T TN POSITIVE: _
"CRN- (846 S MAX CR Excssoeo.

TR T SRV

“nas

—m

[ TREVRNIARpPON NSV U

e et oL

ew

NEGATIVE . ) 607033
660-263 ‘9 .-
: coupure--
A 0.148-603n0 + 3.98'% v2
ALF: 178-3; S au +zs.xs.u2
os 039 uGRNIcIMIGRN::ALF
: K2 XP-XL/-KH=XP. ;
) ' szr UP ‘NEEDED" consmn's ; .
_ 3oo—1sz e ot Ca+iViB+1) . ;
: ,,p g g .g; ,:E (u+s+zug-‘}p}t?§1;,
TR Ty S U | e
i st I NEGATIVE g el POSITIVE
‘ c(ll-H - ’ - T
L ONT{) e S
W a:()-+£8( 2|
co 10 as .
.;3-,-166:-
JQREALL: 1SA. ¢
42172 CREAL SOLUTION |

fnnm.s A8 onur"f .
|REAL.soLUTION- ..

1 11) + OREALY
“leasitye g ilek -
xmoz- [

ﬁu)-mm.s = 72177 _
1= : ye’s 'ru:ne m-: 3;REAL|.
7 N 8 SET:
bl SR <Q1MAG2+0 2):20R
ST . |:GREAL2S: om.v ,.ﬁ‘(a’,'pé,‘.ﬁ’

:REAL RO ” || 8 (3) s OREALS
pm-mm : N 15, 5 @ 13)38(3k

) eB 1) eR. CEALIS ONLY] | IND2+3

P

lNM'i D _REAL ROOT

‘Figure 21, Program 1: Mai Routine:
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COMPUTE

1e0

COMPUTE
- & .
T atk)+B (K42
104,
compuTe
TEst = 4202
X-0.8
22
IR
. 188
T 20
,.2:5 . [ 204-208 ]
;. NO-PAIR: SATISFiES. | | 1 ‘|eowpure:
" INEQUALITY., PRINT | X £XLHOTCI KL
" MESSAGE T0- THIS |- _ 2
'EFFECT 1 ¥ =0 (XH-xL)
' : *‘\/p‘v’ L
= v? (ﬁz 3)
209-104 [ o
CowuTE anot [se7 o- atm wmswr.e.g.x.v.y.w.ﬁ
IWRITEOUTRUT | | B=Bum)
e e e e e et
- NO LOOP
. 3 _
m-208 SATISFIED
COMPUTE: —
4la-f{a+B +3)
! @+ 11 B+ 1) (a+B + 4) \
o) GO 7o
8y« 3(«+B+3)[zu+ﬁ4z) +(a+1)(B+1)a +8- 4] STANT FOR
2 (G«H)(BH)«MB +a)a48 +9) NEXT CASE /
Figure 21. (concluded)
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NOTE: The cent12l range may not exceed

0861"1) - 0.6 | °‘5<"n'x1> -G:P-X.ID [ .

If it-does, the program will skip the case and go on to the next case, Thre
‘beta distribution is computed as follows, First, the standard deviation ¢
is determined, Compute

X = —
3L
C. = = R
Ry XX
Let . L
U = ‘0.5 - X!.
Then 0.39°C;
c =~ R‘Ii
1+ ACRa
N
wheére

A = 0.148 - 0.603U + 3.98U%, and

a = 1078 - 309U + 29.16U2 .

These equations were determined by curve-fitting, using several different
values for the variables involved., Then determine

Xp-Xp,

X ¥p

K=




The parameters o and B are then determined by finding the real solution
of the following* pair of equations (see Appendix II):

K=o ;

£ = Lotl) (Brd)
(+2) (+B43)

For each pair of roots, compute

= a+1
W a+pf+2 °
Let
. ~ XP-X
x = - '. —:L = i‘?, - ,

and find all a, 8 which satisfy
x - 0.5
(In genéral, there will be only one such pair,)
When this pair (@, B is determined, compite:

Y W)
1 ey ey e’

*The equation is solved in the equivalent form:
& ®d & + [702 ®+)° - K] g +(1saz-1> ®+1) B+12° - 1=0 ,
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and

3 @69) | 2 @80)" + (41 () (8-9) |
3 (0HD) (BH1) (@BHd) (0445 ‘

All nécessary parameters are thus computed for determining the four
moments,* These aré-computed as follows:

(a) first additive moment = méan =X = XL + “@H-x'])_
(b) second additive moment = (sf;a.ndZardvdeviai:ion)2 =Y= GQCH'-XD] 2

(3 Xt sign |
(c) third additive moment = V = + Bl { =X >-.sign ’ and
(d) fourth additive moment =W = @-?DY

Alsoin¢luded'in the outjut aré o g.-and \/Y -{the standard deviation),

’Prgg’» ram.II:

The analyst now has cost distributions-(sumimarized by four moments)
for each:of the elements of the systém under consideration, He specifies the
additive-multiplicative combinations. of these distributions that will yield the
total system cost, and inséns the moments of each distribution into Program
II (see Figure 22), Program II computes the specified combinations and
prints out the moments of the totdl cost distribution, as well as certain other
subtotals of interest tc-the analyst, ‘

*In t}ie main text, the four additive moments are referred to as A1 A2 .
Ag , and Ay; in this- appendix they are referred to as X, Y, V, and w,
respectively,
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. N2

24-§
READ IN
3
23-203 208-300
WRITE OUT INITIALIZE
A MOMENTS
206 9.8
CALL READ NEXT |
XIT A
ext Ju4, K1, XL,V -
. 212-29%
POSITIVE]  LiNE TOTAL
‘ DATA
. STORE IN J,1,K,
! XYV W
. PROCESS') | croue FotaL -
. R ' 1 .. oATA
40-403 0. . . _ ‘1 STORE:IN J;1,
e KOXS; Y, VI W)
INITIACIZE DA
LINE TOTAL
Sums —
— | WRITE OUT CARDj-——=
01 ¢ Bma v ‘ .
——— ” 20
CALL LTOTAL IS
TO COMPUTE CALL GTOTAL °
NEXT .LINE " TO COMPUTE
TOTAL TWO. GROUP'
TOTALS
502-14 e
WRITE OUT 510-51.‘1‘ +
LINE ) WRITE OUT
TOTALS BOTH TOTALS
$05-308 $19-822
COMPUTE COMPUTE -MOMENT
. SUMS SUMS
GG TO START
. YES ) .. FOR NEXT
GROUP

Figure 22. Program 11: Main Routine
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Additive- Multiplicative Combinations of Independent Random Variables

Independent random variables D1 and D2 are given; the distributions

for each summarized by its first four moments, Then

D, DIC{1, Y, Vi wD and
D2=D2(x.2, Yo Vi wz) .

The distribution for D, + 'DZ is computed by ¢component adding

moments on the basis of components; that is,

D1+p DSQ(1+X2,Y +Y V1

+Vp W +WD

The: distribution-for :]3_1:1)2 18 .computed by the following equations:*

D,D, = DM,(X', Y, V, W),

where
X=X X,
Y=YY +X°Y¥ +X %Y,
17278 T TRy %4y
Vs vv +3011x2Y2+v X1Y1> +vx +vx +6X1Y1X2Y2, and
2 ~
W= W W +3<WY +W,Y >+46v1 . 2+W2X1Y]>‘

2 2 4 4
+s@x Y, + WX Y + Y Y22>+W1X2 +WX

*This is the result of solving simultaneously the equations shown in
Appendix III,
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2 2. 2 2. 2
+
12<Y X V +Y2 X1V1+Y1 x2 Y +Y2 x1 Y -I»X1V1X2V2
+
X,V.X, Y2+X VX Y1> .

These formulas are equivalent to converting the additive moments into
origin moments, multiplying these origin moments in terms of components
and reconverting ithe product moments to additive moments,

Additive=multiplicative combinations ‘of distributions may be computed
by éiiéluatiné & composite term as in an algebraic expréssion, For example,
to évaluate D @ + D D 3D, ) first evaluate D D , add D {0 the resuit,
and multiply the last result by D « NOTE: 'I‘hn: expression may not be
evaluated in the form

D,D, +D DD, ,

since the two product terms are not independent {both depéﬁd=bn Dl) .
Additive-muitiplicative ¢ombinations of distributions are specified for
the program on two levels: lines and groups (see Figure 23).
Lines

A line is defined as an additive-multiplicative combination of distribu-
tion of the following form:

AAA{AA[AA(0+A0)+AAO+Ao+o]+Ao+Ao+Ao+0}
123 45 67 8910 11213 1415 16 1718 1920 2122 23 °

where each "A" or "0" symbol represents a distribution specified by its
first four additive moments X, Y, V, W, The distribution for "A" is




LINES

GROUP |
GROUP TOTALS

—# N
LINES ~Z» ™
in

GROUP 2
GROUP TOTALS 2

LINES

, GROUP N
GROUP TOTALS JrN

Figure 23. Generalized Cost Structure Bujlt into Program 11
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‘ defined by the moments (i, #, ¢, #),* for "0" by the moments (¢, &, 4, #).
It may be observed that:

(a) if "'0" is added to any distribution D1 s the resulting moments

; that is, 0+D1=D1 H

the resulting

are simply those of the distribution D1
(b) if 0" is multiplied by any distribution Dl .
moments are (§, §, §, #); that is, OD1 = (; and
(c) if "A" is multiplied by any distribution D1 » the resulting
distribution moments are simply those of Dl; ;hat is, AD1 = Dl .
In other words, "0" and "A" resemble the @ and 1 of ordinary arith-
metic, Because of this, the line total .operator as it stands is equivalént to
0, If any "0" were replaced by some Dl’ the line total would become: Dl'
Lines are specified to be equivalent to certain additive-multiplicative
combinations of distributions by the following technique: the analyst is
permitted to replace any term in the line total operator by whatéver distribu-
tion he desires, Such:substitution will alter the valué of the-operator; For
oxninple, by replacing theﬂth, ‘Sﬂl and loth'terms with-thé distribution D"1 R
D2 , and D3 . rgsﬁectivély, the line will be made equivalent to the combi-
nation D1 (Dz -«-‘D3 This cai readily be seen by representing the operator
symbolically:

1141 {1'1[1'D1<D2+ 1°D_:,> + 11 f+14+ d]+ 1°f+1g+1°§ +¢} .

Application of the obvious rules reduces to this

1 [D1@2 + D3>+ ¢]+¢= DIG)2+D:D .

*The slashed zero () is used to denote the numerical zero to avoid
confusior .
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P

Therefore, simply by specifying the liné and the term into which a given set
of distribution moments are to be siibstitited, a large variety of combina~
tions can be evaluated.,

Groups
On the second allowable level of combination-of distributions, the

various- line totals-are separated into. groups, -c0rreSpondtng~, to- subsystems

- of the system under consideration, First, -all:line-moments for-a group are

computéd, Then these moments are sunimed:by:components to produce.a

term S, This tef may be combined with other distributions in-the following

operdtors:

(Gl) ASA + AQ) . .
13 g4 »°d

(G2) AS(AQ)
1 3¢ °

Combinations. are specified in the same manner used for lines: any A or
0 may be replaced by the moments of -any distiibution;. A téFm replaced in
the (G1) operator is also replaced in:the (G2) qpera_to_n-b;r-thgsga,n;e:mqmgntg,
éxcept for the second term, which appears ‘O!i!.y‘ii}‘{fhé:‘(G]_,j_.-'@p‘e':_’a_,@r_g, 1j;;:mﬁy~
be noted that if no terim is replaced in-the operators;. the-result of:(Gl) is: §
and the result of (G2) is "0," |

Final Total
All moments obtained from the (G1)-operatoy-aie added:by:components

to give the final total. Thus, the (G1) group:total.should:beso.defined:that
the total system cost distribution is the:sum.of all of these totals..
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~ FromProgram I, the analyst has moment sets summarizing distribu-
-tions for Subsystems and total system cost uncertainty, These momeiit sets
‘afe now inserted into-Program IH-(sée Figure 24), which converts the
moments. into- the: beta distribution parameters and the bounds for the-cuive
and for any specified percentage tails,

From the input moments, X, Y, V.and W for eachi case, determine

y = +3 .
B ©

N

8 -

i 'Tpe:-féuowm'g%équaﬁoﬁsa are:now to be solved for o and. 8., the:heta

‘curve:parameters:;

= 4@52@ T
(1), (BHI): (5 Br4)

B

o o)
e eps)

The constants; B, and B determine whether-or-not there-is-a mean-
ingful solution:to these:équations, * (Refer to Appendix I 'for the details of
the solution to-these equations,)- If there is a solution.to thesé-equations,

use g to compute for the normalized beta curve:.

atl

*For a unimodal beta distribution, , and g must be positive and real,

N

{normalized mean) ;
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o AT AL AT ¥ Ay Fs o meeevemtebetin O 2 o 1

é-é‘;-_;;;_i- - - ' %
* «.zoﬂso! - TTTT :

1 " READ" IN-AND :
L ~ P_RINT A, NINT ‘ .
t ‘ I
{ T-rReaD IN: coumsnr. ‘ } :
| JILX,Y, VW ‘ i :
-+ . L Tine,298 .
i -\ 207 _AN_ . . " :
By \:NO- s, [PRINT OUT): i ;
i} JF s ‘ COMMENT | |
c......_......_.._.._.;....'..__-......-..J
TCOMPUTE, :

: s!-:u:.a:'mzv .
x CALL SETUP" H ;
_ { RETURN WITH {
T \ nsw-: 2.5,
; L ICASE . “® PROCEED - WITH |

'\ GO TO NEXT . :\ OUT ITERATION

[-ALPHABETA-THE | .
| FIRST. GUESS, . FOR-\. .
"RAFSON_OELFA: :

‘=, .DBETA:FORAEDOLT, )
i »'w-r.--.-v--::-'---_ - |
pemeens S EELT R REAS ] ;

[ TAKE ALPHA,BETA. ) =\ T 1 |
- | FROMLAST neoon / CM-L RAFZON')

=o( "RETURN.WITH ') 1 , R
SYEPEAS f;’l”RST B0 2 B L

T10%5-219.

o) 1
{convenen \
. CWITH L)
\ALPHASBETA) 1

/CALL REDOIT \
DO _6.SQUARES’
‘RETURN WITH'
“INDCO,1

/ CALL.REDOIT .
‘DO NJ72 SQUARES
RETURN WITH
INDC=0,1

CONVERTED .
_WITH
ALPHA ,BETA

214

sl 0

Figure 24. Program Hil: Main Routine

—— a0 e S o e s S
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®

101
NEGATIVE,

ALPHAZBETA

| ALPHA--8ETA|

PRI T e e e , N
24 G . i e o By . W o D P €29 U W et s

o)

W wnd s e -

(353

[

#
A

¥

f 5 ExcHaNGE )
o ALPHA@:BETA

/eatieasmin
RETURN:WITH.
‘WNXNCL,

el
O L ¢
| Xet.xew.

230:5 L

PRINT OUT
INPUT

AND QUTPUT

Figure 24. (concluded)
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T gy

Vied @) N .
oN = (©B+2) \Jo#r3 ' (normalized standard deviation); and

~ _ a .
X= Py (normalized mode) .

The normalized curve must bé integrated to determine the total area

undet the curve: Integrate

b
. _ H a 8
=0 @ e
bL X -
where

bL = mﬂX(ﬂ KN - 40‘N) ’

bI'I = min(l, uy 4:01‘;) .

This integration is performed mimerically with Simpson's rule, The vurber
of intervals used is NINT, * an input (800 is suggested),. Determine the
desired ares under each tail:

AA= A X AREA,

where
A is an input specifying the fractional tail desired,

*Number of intervals to be used ix the Simpson integration,
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The curve is-integrated again, one interval at a time; from each end,
until the X~-values which are the bounds for the tails are reached, These
are called XNCL and XNCH, reéspectively, From the bounds for the normal-

ized curve, the bounds for the sc¢aled beta curve are then determined,

Compute:
p= X (me¥n);
o= '\[f (standard deviation) ,
Then
4 . . Oun.
the-lower bound is XL =p=-=—3
N
the uppér- bound is XH = +2- A~
e W ()

thedower tailbound is ~ XCL =+ T~ (XNGL « . ;.and
" 5 N

the-uppst tailbound i  XCH = ,+3— (chn “u @ .

USE OF TiIT PROSRAMS

Inm ut
The input-for Program I consists of the four parameters specifying
the uncertainty in the cost.of-each-individual system element:

the.lowest cost (lower 1-percent tail);
the hlighest cost (uppei 1 percent tail);

*L
Xy
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X-P = the most probable cost (mode); and
C'R_ = the length- of the 80 percent central range (difference
‘ between upper and lower 10 percent tails),

The-data for-each-elemeént's cost uncértainty is pinched on a separate
input.card, Each éard-has-the following format (refer to Figure 25):

‘Column ¥ is-blank,

Columiis 2t 24 contain a Hollerith identification which the user may
specify to identify the data; This identification will be printed out
béfore the data for the case spécified by the card when the program
output is presented,

Columns 25 to 32 are left blank,

CQl@I@nB‘!}!}&O’?Z} contain the four-paran_leters'XL, XH, XP, and GR’
‘The:data:must be-in-E=format;. contained-in a-field-ofitencolumns,
"The first-column of each field:should'be bidnk olums 33, 43, -53,

-63). Tlie“s:e—cond -contains the sigh (if positive, it may be-omitted),
‘The-third through sixth- columns contain the:three most significant
-digits of thé.huii;bé'r in the form X+XX, The séventh through tenth
columns contain the power-of 10 by which the significant digits must
‘be multiplied to give thé actual number, The exponent mist be in
the form E4XX (+ sign may be left as blank), Thus, the entire

number is shown by:

+ X . XN & E i(x)(x)

IMPORTANT: The last significant digit of the éxponent must be in the

tenth column,
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The cards may be 2rranged in any desired order; the cases will be
processed in the order of their appearance in the deck. Following the card
for the last (physical) case a special card with -1, §JE = g punched in

cclumns 44 to 53 must appear. This signals that all data has been processed,
and the program will exit.

Program Deck

™h~ program deck should have the following sequence of cards:

m JOB
m FMS ’
*  XEQ
[ BINARY PROGRAM DECK]
*  DATA

[ DATA CARDS]
[ CR = <1.0 ¢ard]
Ol ENDIOB '
QOutput

The output data (see Figure 26) will be arrangéd in the following
manner, The identification will be printed at the head of the data for

e~ch case. The input data will then be printed; following this will come the
output data;

X =the first additive moment (the mean) of the approximating beta
distribution;

Y =the second additive moment (variancé);

V =the third additive moment;

W =the fourth additive moment;
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o L _ the parameters which determine the shape of the beta
8 f curve; and

\/Y = the standard deviation

All data will be printed in E-format to three significant decimal digits.

Program {I

It is important that the user read the previous discussion of Program

II for an understanding of how to use this program,

Input ‘

Each group is processed separately by the program, so all cards

relating to the same group must be placéd together, For each group, the

following input cards must be present (see Figure 27):

The first card in each set of group cards must have a positive number
JJ (preferably the number of the group) in Column 5, (If it is a two-

ot

digit nvmber, use columns 4 and 5,)

The next set of cards specifies the line gata for this group, There is
one card for each set of moments-which are to be uséd in:this group,
Each card has an identification field in columns 2 to 24 as in
ProgramJ,

Column 25 is blank,

Columns 26 and 27 contain the group number, J, for the present
group. All cards for one group must be placed together,

Columns 28 and 29 contain the line number, I, ir which this particular
set of moments is to be combined, The I's in each group must be
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arranged from 1 consecutively up to IMAX, which cannot be greater
ﬂuu15¢o ; )

Column 30 is blank,

Columns 31 and 32 contain the term (column) number K for which
the moments on this card are to be substituted in the line total
specified by I. The K term may he any integer between 1 and 23,

inclusive,

Columns 33 to 72 contain ihe moments X, Y, V, Wwhich are to be
substituted for termy K in Line Iin group J. Thesé coliimns have

the same format as on the Program 1 data cards,

The group total cards follow the line cards, Thesé have the-same

format as the line cards, uxcept that:

1 is always # for a group total input; and
K is the term number for which the moments on the card wiil be

substituted (K ranges from 1 to 4, inclusive):

A ¢ard which ie blank, except for a "-1" in columns28 and 29, follows the-
last group total card (or last line total caxd if there is no group total data),
This signals the end of the groip,

Thé cards for all subsequent groups are arranged in the same way,
A card which is blank except for a § punched in column 5 appears after the
I = -1 card for the last group. This signals the end of the data,

Program Ueck

2
Dol o e

m JoB
m FMS
-81-
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*  ZEQ
[BINARY DECK]
*  DATA
33 = 1] card
Line Total Data I > q]

L
Group Total Data I = ¢]

-I =-1 | card
33 =2

card

ete.
I=-1 -l card
3 = ¢]
Il ENDJOB

Output

The line total input data for the first physical group in the deck appears
on the first page followed by the group total input, if any, for this group on
the next-page (see Figure 28). Each entire card will be-printed out except
for the JJ andI = -1 cards.

The line total moments X, Y, V, W for this group are shown on the
next page. Inaddition, threé characters will be printed:

J = the group number;
I = the line number; and

L = ¢, to indicate a line total.

The X,Y,V,W are interpreted in the same way as for Program I, except
that now they are moments representing the distributions of random vari-
ables which are aggregations of other system element costs.

The group total cutput for the group appears on the next page.
-82-
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J = group number

I = ¢, to indicate group total;

L = 1, for the (G1) total; and

L = 2, for the (G2) total

All groups will have their output in this form, After the last group
total output the final total will 'appear, Iis characters are

All output data will be punched-on-cards for direct insertion-ifito
Program L,

*

Program Il

Input

The first card specifies the two parameters.A and NINT for:the
integration process (see Figiire 29):

Columns 1 to 5 are blank,

Columns 6 to 14 contain A, the fraction of the totil:area desired
in each tail,
Columns 15 to 35 are blank,

Columns 36 to 38 contain NINT,

Rest of card blank,

&
The next cards contain the data to be processed'by the program,
Columns 2 to 24 contain identification,
Column 25 is blank,
-84~
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Coluinns 26 and 27, 28 and 29, 30 and 31, and J, I, and L indicate
the control characters.printed with Program II output, These are
merely for the purpose. of identification; they are not used by the
Pprogram,

.Column 32:is blank,

Columns-33:t072: - X, ¥, V, W are in sarme-format as Programs I

Cadd

A-card with-niiné columns (44 to 52)-containing a =1, §fE+#§ muat

appear after-theSe cards, This signals the end of the data,

fit JoB
m FMS
¥ XEQ
[ #rociam pEcK]
* DATA
[ para cars]
[¥=1d camd] .
oI ENDJOB

Exrror Returns

A number of: conditions will cause the program to indicate that no

solution can be found for the present case. When this happens, the program

will proceed with the next data, because the distribution specified by the

moments for this case cannot be converted by the program,

-86~




Output

The output data (see Figure 30) for each case will be preceded by the

identification field and the input data, The output will consist of:

8 curve ;

a } the parameters* determining the shape of the beta
?

x :
9

i

XCL}, the bounds for the 100A percent tails,

the bounds* for the linearly scaled curve; and

XCH

*Refer to fhe definition of the linearly séaled' beta distribution in the
Glossary; a = XL and a+b = XH

-87-

ool 2

e v i

i




.3

BRI L

\ 10 3is°2
. H3X

10 308°2
HOX

T Wvdo0dd

40 30+
T9X

10 3822
J0X

L1 | wriboay 104 yndiny a)dwog *Qf 2161y

10 320¢ 90 3229 00 362
HX ax vi3e
G2 39¢6-:=M 81
10 3629 00 381'8 20 3Ip0'l
HX ax vi3e

10-38¥2—- =M

NOILVHOIANI IvIINIWNAN NI 03SN STVAYILNL 008

T

00 32bv
VHd TV

326°2=A

0 38l ¢
VYHdAV

00 36071 =A

-ans
201t FOIHIA IFOVLIS Uid
110
€1 328°1sA 20 36t = X ‘iNdN!
ans 3DIHIA 3I9WUS utp - —-3SVD
]
QQ
[+ o]
1
202 i 3dnvx3
1Ir
00 32iv = A 10 3¥6'2 =X'LRIN!
t IIIYXT ~—-~~3ISVD

Slve IN3JHIJ 000l




R | W

—— Rl

APPENDIX vn

DETAILS OF FORTRAN SUBROUTINES

PROGRAM 1

Program I requires the solution of a cubic equation. The routine

COMPUTE
An

209-328

COMPUTE ROOTS

QIMAGE 2,3
FROM A n

DIVIDE'B,C,0
BY A (FIRST
COEFFICIENT)

201- 302 I )

‘COMPUTE
. PR

CUBERT (see Figure 31) is used for this purpose.

NO

203-22

COMPUTE

A B

204-314

COMPUTE ROOTS
QREAL1, QREAL2
GREAL3, FROM
A, B8

200

Figure 31. Program 1: Subroutine CUBERT

TR M | o it <o
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PROGRAM III

Subroutine SETUD

The subroitine SETUP (see Figure 32) determines whether 2 solution
exists to the equations in Program III for Bl {a,B) and 82 {a,8). It
checks certain criteria on Bl and 32 to determine the nature of the equa-

t'ons for o and 8 as shown below,

1) The program will skip any case for which Bl is greater than 4 or
62 is greater than 9.

2) If ﬁl is less than 0. 91, no iteration is necessary. In this case,

" the following checks are made:

(@ I BZ is less than 2.9994, then the final solution is |
2(3 ~ 82) ’
() 1If 'BZ is between 2. 9994 and 3. 0015, the final solution is
approximately
o = 8 = 5¢gY.
These are the answers used in this case.

(¢ kK BZ is greater than 3. 0015, there is no solution, and this
case will be skipped.

3 If Bl >0.991, Bz is compared to 3. 991 with the following results;

{a) If .‘32 is less than 3. 991, iteration is necessary, and procedure (4)
is used.

-90-
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ENTER

B; oRr B,

OVER MAX
VALUE

WRITE OUT

SKIP THIS CASE NSw=2
532 _9
= a PRI
a =25 Da sszl RED
B =%0 0a=3 B za NSW = 1
. J
NSW 23

Figure 32. Program 111: Subroutine SETUP
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M) It Bz is greater than 3. ¢§¢1, then the trial solution for B is + =,
In this case, equations are derived for Bl and BZ with B =o,
and the value of o determined in each equation, The equations

are:

o @) - -‘s%l -1
9-9
am(52>= ‘B—Z—Tg

Ko @) >0 <62> , there is no solution possible, and the
case will be skipped,

Ha @D < améz), then the number 'Bz[amm B 3=¢] .
- B, | = beta is computed. Should B < 0.0025 and

o @DS 10%, then this o_ 8, is the solution for o, and 108

is used for 8.

If either of these conditions is not satisfied, iteration is used,

and the program proceeds according-to the next step.

4) When iteration is used, the initial guess for o and B is deter-
mined thus: |
(@) I 52 < 2.929, then the guess for 8 is
582 -9

B=§"(—-3;§2>; .

o = B/2 is used for the RAFSON routine and o = 8 for REDOIT.

-92-
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) I 82 > 2,929, then o =B =50 is used for REDOIT, and q = 25,
B = 50 for RAFSON routine.

If SETUP determines that an iteration is necessary, the solution of
these equations is obtained through an iteration method using an alternating
procedure between the Newton-Rafson method and binary search in two

~

dimensions.

Twelve iteration steps are first attempted with the Newton-Rafson
method; the initial guess on o and B is either specified by the user or is
determined internally if the user so desires. If this method fails to converge,
a closer approximation ;s obtained for the initial guess using one step of. the
binary search, and twelve more steps are performed with the Rafson method.
If.this still fails, another closer initial guess is determined with two steps in
the binary-search, and twelve more Newton-Rafson steps are taken, Finally,

if-convergence is still not attained, ten steps of the binary search are taken,

Subroutine RAFSON

This subroutine (see Figure 33) iterates for the solution to the equa-

tions

_408’ @83

B
L @ ooy’ o
o - e b ws®+ @1 @) :
2 (a+1) (Br1) (o B+4) (a+B+5)

by the Newton-Rafson method.

An initial guess is made by the SETUP routine, with this (a,f), the

first partial derivatives of these equations are computed:
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- P 40003 9@ 0B+ 204 45+ 4 "
e (4)? (Br1) (orpegy’

# ey

« *a-g = Yl with dand B interchanged;

; 3ar+l) (atB+4) (+Br5) [2(a+8+2) +ot1) (B+1) (ot B-4) +(a+B+3)
-a'fﬁz (8 +2B+2<16)_(60L+5)] 3(0.+B+3) [2(a+6+2) +(a+J (B+1)(a+B-4l]
e @) (Be1) s Zor )2

La_ +4a3+20a+3 +11ﬂ4—29) ,

i (a+1) (B*l)(a+B+4) (a+B+5)
BB BB L _
-S-B- = S-a— » With ¢ an§ g interchanged,

With:these, the incrémentsfor . and § are determined using the
relations -of the Newton-Rafson-method:

?
. _ %,
By(c.B)-B, 3
Ao =- — - .
A 28, 38,
X Y
- BBZ 382
. ‘3B
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Then new values of d and B are computed by
a=a+da, B=g+AB ,

and Bl (o8, B2 (o, p) are computed. If these do not satisfy the criterion of
0.01 percent, the process is repeated up to a maximum of twelve times each

time it is called,

Subroutine REDOIT

In the event that Newton~-Rafson iteration fails to converge, this sub-
routine (see Figure 34) is used to compute a guess for RAFSON that will be
closer than the last. The routine is also used to attain convergence if over-
flow or divide checks makes RAFSON diverge.

The procedure is a binary search in two dimensions. An initial guess
is computed by SETUP. Each time after the first, the 1ast value is used as
the guess.

The initial g is held fixed, and o is incremented by 35 percent, until
the last two values of By (o, ) fall on opposite sides of 8 - (If after 20
times no interval containing the solution exists, the program exits and skips
this case.)

If an interval is found successive, linear interpolations are performed
until the computed Bl is within 0.1 percent of the desired value (maximum
of 10 times). This completed, the same thing is done with 8 , holding the
newly computed o fixed until 52 is satisfied.
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A = a

300 s =8
Ny >9 ves AX = FIXED a
8Xx = FIXED B
377 are AA = o COMPUTED FOR STRADOLE
PCT s0.99) ‘—-‘ PCT+0.0 l 88 =8 ° ot
. - AAA = a COMPUTED FOR INTERPOLATION
205 pBeg " " .
ALPHA FIX B BX B1A,BIAA,BIAAA * B, FOR CORRESPONDING @
628,8288,82888 * B," * [
2 206 3
-+
S:-1 8114,BX)- Ss+41
FRETAI IS A FUNCTION !
° 54 THAT COMPUTES THE EQUATION
1 : B, » Ae=B ¥ latB3)
BETA! SATISFIED P (e BHNa+B+4)
FIXA = AX
BETA
210 ¢
INCREMENT vm;ap IS THE
AATA+SI0.358) PR e M
20021
COMPUTE
A=AA 814, B1AA _
6-20 a6
ves | inverpoLATE | | COMPUTE maaA
ol FOR:AAA FOR

8-220

: - .
BETWEEN A8 AA INTERPOLATION

SET AOR AA EQUAL.-
TO AAA SO THAT THE|
TWO BETAI'S
STRADDLE THE
DESIRED B,

Figure 34. Program 111: Subroutine REDOIT

PN

-




( sema )
800-238.
3 . L.
i /" REPEAT FOR BETA
_ WITH ALPHA FIXED
00- 239
ANBC 21 coupute B, -
;INpE L FOR AX, B
i .
:
i
RETURN
Figure 34. (concluded)
L 4
i
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Witch the new (0., 8), Bl (o, P is computed. If the results are within
0.1 percent of Bl , set the indicator to ¥ and return; if not, the process is
repeated. The number of times the process is repeated is a function of the

number of times RAFSON has been used:

1time - 2 times
2 times - 4 times
3 times - 8 times
4 times - 12 times

" NOTE: On the last trial for REDOIT, a 1 percent criterion instead of 0.1
percent is used. If convergence is not attained.after the maximum number of

steps, set the indicator to 1 and return.

The routine GASHUN peérforms the computations for the normalized
beta curve.

Subroutine GASHUN

This subroutine (see Figure 35 computes the mean, standard deviation,

and tail end poinis for the normalized beta curve. The mean

_ ol
BN e
and standard deviation
waﬂi iéﬂi
oN =
(a+§+2) org+3
are computed,
Then thé following integral
bH & A B
bL X 1-X
is to be evaluated; ‘
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101~ 110 \,/

COMPUTE MEAN AND STANDARD DEVIATION -
a4+ 1
B a¥BET2

_Yia+1)(8H)
T *atB+2) Jatp 3

3315 YES

SET b 10 ORp -4 0
WHICHEVER IS MORE POSITIVE,
SET bps1 ORp +4 C
WHICHEVER 1S SMALLER,
SET INTEGRATION RANGE EQUAL TO

- .

SET UP INTERVAL INCREMENTS.
COMPUTE X IN THIS INTERVAL.

mz

00.2 FOR NUMBER
OF INTERVALS AND
COMPUTE AREA FOR
EACH INTERVAL

COMPUTE AREA
OF THE Jth
{NTERVAL

v

ACCUMULATE
TOTAL AREA
6 ¢

TDEL =AREA
UNDER DESIRED
TAIL

¥

DO 3 UNTIL
THE LOWER BOUND
OF DESIRED RANGE

1S DETERMINED

v

D0 6 UNTIL
THE UPFER BOUND
OF DESIRED PAYSE

IS DETERMINED

A-13

Figure 35. Program 111: Subroutine GASHUN

121-128

129 -2
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where
bL=max @, UN -40@
bH =min 1 ’(“N + 40N>

> o
x'ws

Simpson's rule is used to evaluate the area. The formula for the area

under the curve over a particular segment is:

A=ShY()+4Y(2 +2Y(3) + 4Y(4) + Y(5)] ,

o fr

where the Y's are five Y-values taken at five points within this segment on the

X-axis.

The area for each of NINT segments (NINT is an input) is computed and
added to the total of all previous ones to get the total area. Then the seg-
ments are accurﬂulated until their total is greater than A times the total
area. (A‘is an input). The X of the last segment is the lower bound (XNCI)
for the tail desired, The upper bound (XNCH) is detefmined similarly.
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